

PLASMID DNA EXTRACTION KIT

Kit Components

Components	Storage
Plasmid Extraction Buffer	2 - 8°C
Plasmid MagNa Mix	RT
Plasmid Wash Buffer	RT
Plasmid Elution Buffer	2 - 8°C
MagNa Stand (optional)	RT

Materials needed prior to start

- Add 96 100% Ethanol to the Wash Buffer as indicated on the bottle.
- Set the water bath at 80°C.

PROTOCOL

Bacterial lysate Preparation

1. Harvest 1.5 ml of overnight bacterial culture ($OD_{600} > 1 - 1.5$) by centrifuging at 10,000 rpm for 5 minutes. Carefully discard the supernatant and remove traces of excess medium, if any.

Note: For low copy number plasmids, bacterial culture volume can be varied upto 2 ml.

- 2. Add **150** μl **Plasmid Extraction Buffer** and gently resuspend the pellet by pipette mixing, until the cells are completely dispersed in the buffer.
- 3. Incubate at **80°C for 3 minutes**.
- 4. After incubation, centrifuge the lysate at 14,500 rpm for 10 minutes.
- 5. Transfer the supernatant to a fresh microcentrifuge tube without disturbing the pellet.

Plasmid DNA Binding and Washing

Note: Vortex the Plasmid MagNa Mix to ensure complete dispersion of the particles.

6. Add **120** μ**l** of **Plasmid MagNa Mix** to the supernatant and mix gently by inverting the tube 10 - 12 times. Incubate at room temperature for 5 minutes.

- 7. After incubation, place the tube on the MagNa Stand for 2 minutes or until the solution becomes clear.
- 8. Decant the supernatant without removing the tube from MagNa Stand.
- 9. Add **200 μl of Plasmid Wash Buffer** and invert mix gently 5 6 times without removing the tube from MagNa Stand.
- 10. Decant the supernatant without removing the tube from MagNa Stand.
- 11. Repeat step 9 10.
- 12. Air dry the pellet without removing the tube from MagNa Stand for 5 10 minutes.

Note: Do not over dry the pellet.

Plasmid DNA Elution

- 13. Remove the tube from the MagNa Stand and add 45 µl of Plasmid Elution Buffer.
- 14. Carefully resuspend the pellet by gentle pipette mixing. (*Do not vortex the pellet*).
- 15. Incubate the tube at 80°C for 2 3 minutes with intermittent tapping.
- 16. After incubation, place the tube on MagNa Stand until the solution becomes clear.
- 17. Transfer the supernatant containing the plasmid to a fresh microcentrifuge tube without disturbing the pellet.

Note: In the elution step, if MagNa particles take more than 10 minutes for clearing, then spin the tubes at 14,000 rpm for 5 minutes, place on MagNa Stand and collect the supernatant for pure DNA.

Experimental set up for large culture volumes

Bacterial culture volume	5 ml	10 ml
Extraction Buffer Volume (step 2)	500 μl	1200 µl
Incubation @ 80°C (step 3)	5 minutes	5 minutes
MagNa Mix volume (step 6)	400 μ1	800 μ1
Wash Buffer volume (step 9)	1000 μl	1000 μ1
El-ti l (-t 12)	1001	1501
Elution volume (<i>step</i> 12)	100 μ1	150 μl

Downstream applications

Plasmid DNA obtained from this method is ready to use for any downstream application without any further precipitation or purification step.

Troubleshooting Guide

Observation	Possible causes	Suggested Solution
Low DNA yield		Take correct volume of bacterial culture.
or Poor Quality		Ensure that OD_{600} is above 1 - 1.5.
or Foor Quanty	Low copy number	For low copy number plasmids, bacterial
	plasmids	culture volume can be varied up to 2 ml.
	Prolonged incubation time	Ensure that lysis incubation time is
Genomic DNA	at 80°C during lysis	followed accurately.
contamination	Contamination Old bacterial cultures	Perform experiment with overnight
		culture of bacteria.
	Absence of ethanol in Plasmid Wash Buffer DNA Bacterial culture does not have plasmid	Ensure that correct volume of 98 - 100%
		Ethanol is added in the Plasmid Wash
		Buffer.
DNA		Check whether the culture contains
		plasmid. Ensure that the cells are
		properly transformed.
Multiple DNA	Multiple DNA Nick formation bands in Agarose gel Plasmid Contamination	Harsh pipette mixing may lead to nick
_		formation. Pipette mix gently.
		Ensure that the cells are properly
Agarose gei		transformed with single plasmid only.